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Synopsis 
A new network model is suggested and a constitutive equation is developed on the basis of the 

assumed validity of Boltemann’s superposition principle for the shear stress. The predictions 
of the model concerning the relaxation behavior of polymer melts after steady shear or instan- 
taneous deformation are compared to Lodge’s theoretical results and to experimental data 
from the literature. 

INTRODUCTION 

Many a t tempt~l -~  have been made to extend the molecular network theory 
of rubber-like elasticity for permanently crosslinked rubbers so as to apply to 
concentrated high polymer solutions and melts. 

Common to all such theories is the assumption that the stress is determined, 
apart from an additive isotropic pressure, by the deformation history of an im- 
permanent molecular network whose junctions are created and lost during the 
deformation. 

The theory of Lodge gives constitutive equations which account for large 
viscosity, positive primary normal stress difference, and large elastic recoil. 
In the case of melts, solvent viscosity may be disregarded and stresses at any 
instant may be uniquely referred to the space distribution of network segments 
a t  that time. 

The fundamental task of Lodge’s and similar theories is thus the determination 
of an equation capable of relating the spatial distribution of network segments to 
macroscopic flow history. This task is accomplished in Lodge’s theory starting 
from the following assumptions: (1) affinity between chain segment distortion 
and macroscopic deformation; (2) constant and stress-independent probability of 
junction loss; (3) isotropic generation of network segments; and (4) Gaussian 
network. 

Experimentally, the relaxation modulus is nonexponential, and this observa- 
tion forces Lodge to subdivide the network junctions into classes, each of which 
is characterized by a particular relaxation time 7. 

The theory of Lodge is capable of predicting second-order effects, such &s 

normal stresses, but it furnishes a viscosity which is independent of shear rate. 
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Yamamoto6+ accounts for non-Newtonian behavior by modifying assump- 
tions (3) and (4) of Lodge: (5) anisotropic generation of chain segments; and 
(6) non-Gaussian network. 

Kaye9 explains non-Newtonian behavior by assuming that the junction loss 
probability depends on the stress tensor. 

Millslo has investigated experimentally the relaxation behavior of poly(di- 
methylsiloxane) after both steady shear flow and instantaneous deformation. 
He takes into consideration both tangential stress and normal stress difference. 
From Mills’ data, it is possible to test the following predictions of Lodge’s theory: 

PI28 = - P s / 2 +  (1) 

where P denotes the primary normal stress difference during relaxation, Plz 
the tangential stress during relaxation, and all quantities appearing in eqs. (1)- 
(3) refer to experiments of relaxation after steady shear (superscript s) or in- 
stantaneous deformation (superscript i) ; + and y are, respectively, the steady 
shear velocity gradient and the instantaneous deformation. Comparison with 
Mills’ data shows that only eq. (2) fits experimental results. 

In all cases, the normal stress seems to decay much more slowly than pre- 
dicted by Lodge. Mills concludes that it is necessary to find two separate mem- 
ory functions for tangential and normal stress. For incompressible materials 
this task cannot be accomplished within the framework of a linear viscoelastic 
theory. 

In this paper we show that strong disagreements between the theory of Lodge 
and the experimental data on relaxation may be explained by introducing a new 
network model without requiring “ad hoc” nonlinearity considerations, a t  least 
for sufficiently low +. 

BASIC ASSUMPTIONS OF A NEW PROPOSED MODEL 

It may easily be shown that eq. (2) can be deduced not only from Lodge’s 
theory, but from any linear visco-elastic theory, since it is a necessary conse- 
quence of Boltzmann’s superposition principle. The observed agreement of eq. 
(2) with the experimental data therefore supports a linear analysis, but may 
not be considered as a proof of the validity of Lodge’s theory. 

In  proposing a new network model, we shall give an equstion relating the 
segment distribution function to the flow history: 

n(r,t> = d:I+(t’) 1 (4) 

the main task of our paper being the determination of the actual form of the 
functional C. The stresses can then be calculated as moments of the distribution 
functionn(r,t) (see, e.g., ref. 11, eq. 3.37). 

Adapting the results to a Gaussian network and assuming for simplicity that 
all segments contain the same number v of free units, each of length I ,  we obtain 
for shear flow 

P12 = 2kTb zyn(r,2)d3r (5) 
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P = 2kTb (xz - y2)n(r,l)df 

where the x direction is flow parallel; b stands for 3/2v12; k is the Boltzmann 
constant; and T is absolute temperature. In order to calculate n(r,t), we shall 
formulate some conditions which restrict the possible forms of C. 

We make no specific assumption as to the kinetics of segment generation and 
dissociation, but according to Mills’ results, we require that the shear stress as 
calculated from eq. (5) must obey Boltzmann’s superposition principle for an 
arbitrary flow history +(t’) : 

Plz = sf m G(t - t’)+(t’)dt’ (7) 

where G is the memory function for shear stress, better known as the relaxation 
modulus. Furthermore, we require that no separate memory function need 
be introduced in order to explain normal stress relaxation. As a consequence of 
this assumption, we establish a principle of correspondence between memory 
functions, stating that d: must not contain material time constants not appear- 
ing also in the constitutive equation (7). 

Other restrictions to the possible forms of d: can be derived from normalization 
conditions, asymptotic considerations, and invariance principles. A complete 
list of our assumptions is given below: 

1. Unique derivability of stresses from the deformation state of a Gaussian 
network. 

2. Uniform molecular weight of segments. 
3. Validity of Boltzmann’s superposition principle for the shear stress. 
4. Existence of a principle of correspondence for memory functions referring 

5. Normalization condition for the distribution function 

(no = constant) 

to P12, P, c. 

Jn(r,t) d+ = no. 

6. 

7. 
Assumptions 3 and 5 are seemingly not true for high enough flow rates, so 

that the applicability of our model is restricted to the region of Newtonian be- 
havior. Within this limitation, the new model, though semiphenomenological 
in nature, can be applied to general network systems, such as the energetic model 
of Lodge-Yamamoto or a sliding contact network m ~ d e l . ’ ~ * ~ ~  

Reduction of n(r,t) to the Gaussian distribution function niao = n o ( b / ~ ) ” ’  

Invariance of d: with respect to a uniform shift in the time scale. 
exp (- br2) for a vanishing flow history [+(t’) - 01. 

MODEL SOLUTION 

There are at least two independent (and probably only two) functionals 
C[+(t’) ] satisfying all requirements 1-7, as may be seen by inspection: 
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where n* and % are defined:by 

Formally, n* may be associated with a network state characterized by a macro- 
scopic deformation y ( t )  - -At’), whereas % may be associated with a state of 
flow y( t ’ )  starting at  time t’.  

8 1  leads to the following equation: 

which, after integration by parts and with reasonable restrictions on G(t) ,  re- 
duces to eq. (7): (I) G(0) finite and equal to no kT; (11) G ( m )  = 0. Actually, 
restriction (I) is also needed to satisfy the normalization requirement. 

When 
substituting ez in eq. (5), we get Boltzmann’s superposition principle in the 
s tanhrd form (7). 

Putting n(r, 1) = 81[.i( t’)]  and making use of eqs. (5) and (6), we obtain, 
in the case of stress relaxation, the set of results ( l ) ,  (2), and (3) obtained by 
Lodge. In fact eq. (8) is nothing but the characteristic time evolution equation 
of the distribution function according to the theory of Lodge for the case of a 
uniform segment length. Thus, eq. (8) has quite an obvious structural mean- 
ing; it suggests the existence of a temporary network which deforms in an affine 
fashion. 

Equation (9) has no well-known structural counterpart and leads to completely 
new connections between the tangential and normal stresses during relaxation. 
A discussion of the structural implications of this new model will be given after 
the experimental check on its predictions given in the following section. 

On the other hand, no such restriction is necessary for functional Cz. 

COMPARISON OF LODGE’S THEORY AND NEW MODEL WITH 
EXPERIMENTAL DATA ON RELAXATION 

Equation (9), when applied to relaxation processes, gives the following con- 
nection between the tangential and normal stresses : 

P a / P u a  = +t (13) 

P”P12< = y t / e  (14) 

where time t is measured from the instant of flow interruption. Equation (13) 
refers to relaxation after steady shear ?;; eq. (14) applies to relaxation after a 
quasi-instantaneous deformation y ; E is the time duration of the deformation 
impulse which is presumed to be applied at constant shear rate y / ~ .  The valid- 
ity of eq. (14) is obviously subject to the condition t >> E. Equations (13) and 
(14) correspond to eqs. (1) and (3) of Lodge, to which they have been compared 
using Mills’ experimental data as a reference. 

Differentiating eq. (1) with respect to  time we get 
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Sample E302/3 1 ' '  I 

t (sec) 

Fig. 1. Mills' data on relaxat.ion after steady shear plotted for a comparative check of eqs. (15) 
and (26). 

which is to be compared with the alternative equation 

p l z q  = IFj/+t. (16) 

Mills' data for l k 1 2 8 1 ,  P8/2+, and Ik'l/+t referring to an experiment of relaxation 
after steady shear performed on the author's sample E 302/31° were plotted in 
Figure 1 against time for a comparative check of eqs. (15) and (16). Similarly, 
we get from eqs. (3) and (14) 

Equations (17) and (18) have been comparatively checked by plotting Mills' 
data referring to experiments of relaxation after instantaneous deformation per- 
formed on sample E 302/1C (see Fig. 2). The value for e was known from ex- 
perimen t . 

It may be seen from Figures 1 and 2 that the new model fits the experimental 
data much more closely. 

By making a linear superposition of 21 and 2 2 ,  we obtain a more general (seem- 
ingly the most general) form of functional 2, satisfying all the prescribed re- 
quirements 1-7 : 

e, = q81 + (1 - q)  ez (19) 

where q is a dimensionless numerical constant expressing the relative weight of 
the Lodge component .&. 
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2 

x Sample E 302/lc 

E = 0.3 sec 

t (sec) 

Fig. 2. Mills' data on relaxation after instantaneous deformation plotted for a comparative 
check of eqs. (17) and (18). 

From eq. (19) we obtain 

p(0) l  = 2 ?; q Pd(0) .  (20) 
Comparison with experimental data gives, as expected, quite a low value for the 
relative weight of the Lodge component: 

q N 0.1. (21) 

CONCLUDING REMARKS ON THE STRUCTURAL 
INTERPRETATION OF THE NEW MODEL 

Considering a polymer network in conditions of steady flow or stress relaxa- 
tion, we remark that its most general state, according to eq. (9), results from the 
superposition of two states: a rest state niso and a flow state El into which 
activated segments are forced. We observe that, according to eq. (9), even in 
conditions of steady shear, a nonvanishing number of segments may be left in a 
rest state. On the other hand, eq. (9) suggests that, after flow interruption, 
some segments still remain in a state of distortional motion, their progressive 
decay into the isotropic rest state being responsible for the relaxation of stresses. 

Such a strongly nonaffine behavior seems to be incomprehensible within the 
domain of the temporary network model, but it becomes acceptable if we think of 
a polymer melt as a collection of entangling molecules. In fact, i t  is quite rea- 
sonable to assume that network segments belonging to such a system are re- 
peatedly swept across flow-activated states and isotropic rest states. Further- 
more, it is not surprising that an instantaneous flow interruption does not freeze 
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the entangling molecules, but rather leaves activated segments in a state of 
distortional motion, as predicted by eq. (9). 

Our feeling is that the observed agreement of the new model with experimental 
data on stress relaxation seems to support the entanglement hypothesis. 

The authors wish to thank Profs. A. S, Lodge and A. Ziabicki for their stimulating discussions. 
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